12/11/2023
This is honeycomb that contains "bee bread". We all know that bees gather pollen but the bees do not consume their pollen fresh. Instead, they take it into the hive and pack the granules into empty comb cells, mixing them with nectar and digestive fluids and sealing the cell with a drop of honey. Once processed in this way, the pollen remains stable indefinitely. Beekeepers call this form of pollen ‘perga’ or ‘bee bread’.
Fresh pollen is high in moisture and protein and, especially when brought into the hive—which stays around an internal temperature of 37˚C—becomes an ideal environment for mould growth. The bees’ digestive fluids, however, are rich with lactic acid bacteria (LAB), which come to dominate the pollen substrate when it is packed together and sealed from the air with honey. The bacteria metabolise sugars in the pollen, producing lactic acid and lowering the pH from 4.8 to around 4.1 well below the generally recognised threshold for pathogenic microbial growth of 4.6.
These LAB come predominantly from the bees themselves, rather than, for example, the plants from which they forage and the difference in microbial ecology of fresh pollen vs. stored is great Furthermore, many of the genera which come to dominate fermented pollen are also some of those most common in fermented food products made by humans: Oenococcus, Paralactobacillus, and particularly Bifidobacterium, a known probiotic genus whose activity in bee hives has also been correlated with lower counts of pathogenic microbes Beneficial yeasts and fungi have also been documented in bee bread . Many of these beneficial fungi are susceptible to fungicides in the environment often applied to plant crops. Greater microbial diversity of beneficial microbes in bee colonies has also been correlated with greater genetic diversity of the bees themselves, and this symbiosis between bees and their microbes, like in humans, is becoming increasingly studied as a likely fundamental part of overall hive health
In addition to preservation the fermentation process of the pollen also renders its nutrients more available. Some proteins are broken down into amino acids, starches are metabolised into simple sugars, and vitamins become more bio-available. In this sense, bee bread is even more health-giving than the more commonly available fresh bee pollen.
Yet the sensory transformation of the bee pollen into bee bread might be most remarkable. The floral and herbal notes of individual granules become enhanced; the powdery, sandy texture becomes firmer and moister; the acidity from the lactic acid brightens the flavour and tempers possible bitterness; and the fermentation also produces secondary aromas that generate new flavours of fruit—some, for example, gain the distinct taste of mango. The particularities of the fresh pollen, depending on the season and its plant sources, become enhanced, and new qualities that were not present before are revealed.